Iklan

Tag Archives: statistik

Tentang 7 Basic Quality Tools

ishikawa-7-quality-tools

Dr. Ishikawa
As much as 95% of quality related problems in the factory can be solved with seven fundamental quantitative tools.

 

Seorang ahli pengendalian kualitas statistik dari Jepang, Kaoru Ishikawa, percaya bahwa statistik mampu menyelesaikan 95% persoalan kualitas. Ishikawa menyarankan untuk meningkatkan  penggunaan statistik dengan jalan melatih semua orang dalam organisasi agar dapat menggunakan dan menguasai alat-alat statistik yang diperlukan untuk  pengendalian kualitas, seperti: bagan Pareto, diagram tulang ikan  (fishbone), histogram, dan sebagainya. Alat-alat statistik ini kemudian dikenal dengan nama 7 Tools yang dirancang sederhana agar dapat dipakai siapa saja, termasuk para pekerja yang berbekal pendidikan menengah. Lanjutkan membaca

Iklan

Statistical Process Control

Untuk menganalisis dan memperbaiki proses, kita tentunya harus memahami dan juga mengerti bagaimana kinerja proses tersebut. Dalam dunia pengendalian kualitas (quality control)  terdapat suatu  metode statistik untuk membantu kita dalam melihat apakah suatu proses di bawah kendali, atau sebaliknya. Metode tersebut adalah statistical process control (SPC), dan menjadi bagian dari tujuh alat kualitas dasar (7 basic quality tools) yang harus dikuasai oleh para anggota gugus kendali kualitas (quality control circle).

Lanjutkan membaca


Uji Normalitas dengan Kolmogorov–Smirnov Test pada PSPP

gb-ank

Kolmogorov–Smirnov test (K-S test) merupakan pengujian statistik non-parametric yang paling mendasar dan paling banyak digunakan, pertama kali diperkenalkan dalam makalahnya Andrey Nikolaevich Kolmogorov pada tahun 1933[1] dan kemudian ditabulasikan oleh Nikolai Vasilyevich Smirnov pada tahun 1948[2] . K-S test dimanfaatkan untuk uji satu sampel (one-sample test) yang memungkinkan perbandingan suatu distribusi frekuensi dengan beberapa distribusi terkenal, seperti distribusi normal Lanjutkan membaca


Uji Normalitas dengan Geary’s Test

Uji normalitas adalah mengukur perbandingan data empirik dengan data berdistribusi normal teoritik yang memiliki mean dan standar deviasi yang sama dengan data empirik. Data terdistribusi normal  adalah salah satu syarat data parametrik sehingga data memiliki karakteristik empirik yang mewakili populasi. Lanjutkan membaca


Beralih dari SPSS ke PSPP

pspplogoBagi anda yang pernah menggunakan statistik untuk tugas  kuliah atau penelitian, tentu  sudah tidak asing dengan software statistik yang bernama SPSS. SPSS populer karena sering dijadikan dasar pengenalan software statistik di perguruan tinggi.  Kini SPSS sudah diakuisisi oleh IBM, menurut informasi dari Wikipedia sejak tanggal 28 Juli 2009, SPSS disebut sebagai PASW (Predictive Analytics SoftWare) sehingga jika kita mencari SPSS versi 18 kini namanya PASW Statistics 18. Lanjutkan membaca


Scatter Diagram dan Hubungannya dengan Prinsip Stratifikasi

Kali ini saya ingin membahas prinsip penting stratifikasi (stratification) dalam kaitannya dengan diagram fishbone dan diagram Pareto. Stratifikasi dalam istilah statistik merupakan pembedaan/penggolongan data ke dalam beberapa lapis/kelompok (strata) berdasarkan sumber atau kondisinya sehingga kita dapat melihat polanya. Dengan pola yang ada, kita dapat mengestimasi efektivitas hubungan/ korelasi sebab-akibat (causality) sehingga dapat menentukan metode-metode penanganan masalah yang lebih efektif.

Pada postingan terdahulu, saya sudah menulis tentang cara mengestimasi korelasi antar dua data atau lebih dengan menggunakan regresi linear. Bagi sebagian orang terutama karyawan yang bertugas di lantai produksi, metode ini dianggap “susah”. Metode ini tidak akan “menarik” mereka untuk berpartisipasi dalam penyelesaian masalah, mungkin malah sebaliknya akan jadi penghalang orang-orang tersebut untuk berpartisipasi. Diperlukan metode yang lebih sederhana dan “mudah”. Jika kita menengok implementasi QCC di beberapa perusahaan, scatter diagram banyak digunakan dan terbukti sangat membantu tujuan-tujuan stratifikasi ini.

Scatter diagram atau scatter plot merupakan salah satu dari 7 alat kualitas (7 tools of quality) yang digunakan untuk menginvestigasi korelasi antara dua variabel; apakah arah korelasi keduanya positif, negatif, atau tidak ada korelasinya sama sekali? Kedua variabel ini dinyatakan sebagai variabel X dan variabel Y, nilai dari kedua variabel ini digambarkan dalam bentuk titik-titik (points) pada sumbu koordinat X dan Y.

Untuk memahami scatter diagram, saya sajikan ilustrasi pada Gambar 1 di bawah ini beserta cara membuat dan membacanya.

 

Gambar 1. Scatter Diagram: Hubungan antara Masalah Painting dengan Tingkat Kekotoran

 

 

Cara Membuat Scatter Diagram

 

1. Tentukan Variabel Independent dan Dependent

Umumnya scatter diagram mempunyai 2 variabel yang akan digunakan pada 2 sumbu (axis); sumbu X dan sumbu Y. Pada sumbu X ditempatkan variabel independent sebagai variabel “penyebab”, sementara pada sumbu Y ditempatkan variabel dependent sebagai variabel “akibat” yang mana perubahan variabel ini disebabkan perubahan variabel independent.

Perhatikan Gambar 1, saya sedang mencoba mencari tahu apakah meningkatnya defect kotor dikarenakan meningkatnya masalah painting?

Dalam kasus ini, saya hanya bisa mengambil 2 data dari stasiun QC, yaitu: data defect kotor dan data defect painting. Saya punya dugaan bahwa defect kotor akibat dari pembersihan/ perapihan bekas painting yang belum tuntas, sementara data defect painting adalah defect painting yang lolos dan ditemukan di stasiun QC. Oleh karena itu, data defect kotor kita tetapkan sebagai data akibat (effect) atau dependent (Y), sementara data defect painting kita tetapkan sebagai data penyebab (cause) atau independent (X).

 

2. Kumpulkan data

Tetapkan waktu pengamatan dan kumpulkan sejumlah data.

 

3. Gambar Sumbu X dan Sumbu Y

Gambarkan garis lurus horisontal untuk sumbu X, kemudian dimulai dari bagian kiri sumbu X gambarkan garis lurus vertikal ke atas untuk sumbu Y.
Tentukan nilai tertinggi dan nilai terendah masing-masing data. Tetapkan skala antara nilai tertinggi dan terendah untuk masing-masimg sumbu X dan sumbu Y.

 

4. Buat Titik-Titik Data

Ambil sepasang data variabel independent dan dependent. Cari lokasi nilai variabel independent pada sumbu X, kemudian tarik lurus ke atas sampai pada lokasi nilai variabel dependent pada sumbu Y. Buat tanda titik koordinat pada lokasi kedua variabel tersebut bertemu, ulangi cara yang sama untuk semua data yang sudah dikumpulkan.

 

5. Lengkapi Informasi

Bubuhkan label yang diperlukan, contoh:

  • Judul diagram: Hubungan antara Masalah Painting dengan Tingkat Kekotoran
  • Judul sumbu X: Masalah Painting (K Unit)
  • Judul sumbu Y: Tingkat Kekotoran (K Unit)
  • Banyak data: n = 5
  • Periode: 1–10 Agustus 2011
  • Dibuat oleh: Eris

 

Cara Membaca Scatter Diagram

Ketika kita akan mengevaluasi scatter diagram, kita sebaiknya mempertimbangkan derajat korelasi beserta jenis-jenis korelasi yang sudah disimpulkan para ahli statistik seperti yang ditunjukkan pada Tabel 1 dan Tabel 2 di bawah ini.

 

Table 1. Derajat Korelasi

Pola Scatter Diagram Derajat Korelasi Artinya
Scatter diagram with no correlation Tidak Ada Tidak ada korelasi yang dapat dilihat. Variabel akibat (Y) tidak dipengaruhi oleh variabel penyebab (X) yang sedang dikaji.
Scatter diagram with low correlation Lemah Korelasi samar terlihat. Mungkin variabel penyebab (X) mempengaruhi variabel akibat (Y), tetapi tingkat pengaruhnya masih diragukan. Ada variabel X lain yang perlu dianalisis atau ada variasi signifikan di dalam variabel X tersebut.
Scatter diagram with high correlation Kuat Sebaran titik-titik mengelompok dalam bentuk linier yang jelas. Kemungkinan variabel penyebab (X) mempengaruhi langsung variabel akibat (Y). Oleh karena itu, setiap perubahan pada X akan memprediksi perubahan pada Y.
Scatter diagram with perfect correlation Sempurna Sebaran titik-titik jatuh pada sebuah garis lurus. Jika bentuknya seperti ini, dengan nilai variabel penyebab (X) tertentu kita dapat memprediksi secara pasti berapa nilai variabel akibat (Y).

 

Table 2. Jenis-Jenis Korelasi

Pola Scatter Diagram Jenis Korelasi Artinya
Scatter diagram with positive correlation Positif Peningkatan nilai variabel penyebab (X) menghasilkan peningkatan nilai variabel akibat (Y)
Scatter diagram with negative correlation Negatif Peningkatan nilai variabel penyebab (X) menghasilkan penurunan nilai variabel akibat (Y)
Nonlinear scatter diagram Nonlinier Berbentuk kurva U atau S. Perubahan nilai variabel penyebab (X) menghasilkan perubahan nilai variabel akibat (Y) yang berbeda, tergantung posisi pada kurva.

 

Lalu bagaimana dengan derajat korelasi dan jenis korelasi pada contoh scatter diagram (Gambar 1) di atas? Karena jumlah pasangan data sedikit (n=5), scatter diagram tersebut belum secara jelas menunjukkan derajat dan jenis korelasi. Itulah kenapa para ahlinya statistik menyarankan pengumpulan data minimal n=30. Syarat jumlah data ini perlu dipertimbangkan agar scatter diagram berfungsi maksimal.

 

 

Rujukan:


Dahlgaard, J. J., Khanji, G. K., & Kristensen, K. (2008). Fundamentals of Total Quality Management. Abingdon, Oxon: Routledge.

Straker, D. (n.d.). Scatter diagram: How to understand it. Retrieved from http://syque.com/quality_tools/toolbook/Scatter/how.htm


Check Sheet dan Fungsinya dalam Pengendalian Kualitas

check-sheet-icon Ketika saya membutuhkan bantuan team untuk menghitung jumlah mesin di seluruh lokasi, saya terlebih dahulu membuat sebuah form isi yang biasa disebut check sheet (lembar periksa). Tujuannya agar teman-teman saya bergerak terarah, sistematis, dan teratur untuk mengambil data sesuai yang saya inginkan, tanpa saya harus banyak bicara. Lanjutkan membaca